Dehn filling, volume, and the Jones polynomial
نویسندگان
چکیده
منابع مشابه
Dehn Filling, Volume, and the Jones Polynomial
Given a hyperbolic 3–manifold with torus boundary, we bound the change in volume under a Dehn filling where all slopes have length at least 2π. This result is applied to give explicit diagrammatic bounds on the volumes of many knots and links, as well as their Dehn fillings and branched covers. Finally, we use this result to bound the volumes of knots in terms of the coefficients of their Jones...
متن کاملun 2 00 7 DEHN FILLING , VOLUME , AND THE JONES POLYNOMIAL
Given a hyperbolic 3–manifold with torus boundary, we bound the change in volume under a Dehn filling where all slopes have length at least 2π. This result is applied to give explicit diagrammatic bounds on the volumes of many knots and links, as well as their Dehn fillings and branched covers. Finally, we use this result to bound the volumes of knots in terms of the coefficients of their Jones...
متن کاملSe p 20 07 DEHN FILLING , VOLUME , AND THE JONES POLYNOMIAL
Given a hyperbolic 3–manifold with torus boundary, we bound the change in volume under a Dehn filling where all slopes have length at least 2π. This result is applied to give explicit diagrammatic bounds on the volumes of many knots and links, as well as their Dehn fillings and branched covers. Finally, we use this result to bound the volumes of knots in terms of the coefficients of their Jones...
متن کاملReducing Dehn filling and toroidal Dehn filling
It is shown that if M is a compact, connected, orientable hyperbolic 3-manifold whose boundary is a torus, and 7‘1, FZ are two slopes on i7M whose associated fillings are respectively a reducible manifold and one containing an essential torus, then the distance between these slopes is bounded above by 4. Under additional hypotheses this bound is improved Consequently the cabling conjecture is s...
متن کاملExceptional Dehn filling
This Research in Team workshop focused on several problems in the theory of exceptional Dehn fillings in 3dimensional topology. Dehn filling is the construction in which you take a 3-manifoldM , with a distinguished torus boundary component T , and glue a solid torus V to M via some homeomorphism from ∂V to T . The resulting manifold depends only on the isotopy class (slope) α on T that is iden...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Geometry
سال: 2008
ISSN: 0022-040X
DOI: 10.4310/jdg/1207834551